239 research outputs found

    Semiclassics in the lowest Landau band

    Full text link
    This paper deals with the comparison between the strong Thomas-Fermi theory and the quantum mechanical ground state energy of a large atom confined to lowest Landau band wave functions. Using the tools of microlocal semiclassical spectral asymptotics we derive precise error estimates. The approach presented in this paper suggests the definition of a modified strong Thomas-Fermi functional, where the main modification consists in replacing the integration over the variables perpendicular to the magnetic field by an expansion in angular momentum eigenfunctions. The resulting DSTF theory is studied in detail in the second part of the paper.Comment: Latex2e, 31 page

    The BCS gap equation for spin-polarized fermions

    Full text link
    We study the BCS gap equation for a Fermi gas with unequal population of spin-up and spin-down states. For cosh(δμ/T)2\cosh(\delta_\mu/T) \leq 2, with TT the temperature and δμ\delta_\mu the chemical potential difference, the question of existence of non-trivial solutions can be reduced to spectral properties of a linear operator, similar to the unpolarized case studied previously in \cite{FHNS,HHSS,HS}. For cosh(δμ/T)>2\cosh(\delta_\mu/T) > 2 the phase diagram is more complicated, however. We derive upper and lower bounds for the critical temperature, and study their behavior in the small coupling limit.Comment: 23 pages, 1 figur

    The BCS Critical Temperature in a Weak External Electric Field via a Linear Two-Body Operator

    Get PDF
    We study the critical temperature of a superconductive material in a weak external electric potential via a linear approximation of the BCS functional. We reproduce a similar result as in Frank et al. (Commun Math Phys 342(1):189–216, 2016, [5]) using the strategy introduced in Frank et al. (The BCS critical temperature in a weak homogeneous magnetic field, [2]), where we considered the case of an external constant magnetic field

    The BCS critical temperature in a weak external electric field via a linear two-body operator

    Get PDF
    We study the critical temperature of a superconductive material in a weak external electric potential via a linear approximation of the BCS functional. We reproduce a similar result as in [Frank, Hainzl, Seiringer, Solovej, 2016] using the strategy introduced in [Frank, Hainzl, Langmann, 2018], where we considered the case of an external constant magnetic field.Comment: Dedicated to Herbert Spohn on the occasion of his seventieth birthday; 29 page

    Renormalization and asymptotic expansion of Dirac's polarized vacuum

    Full text link
    We perform rigorously the charge renormalization of the so-called reduced Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based on the Dirac operator, describes atoms and molecules while taking into account vacuum polarization effects. We consider the total physical density including both the external density of a nucleus and the self-consistent polarization of the Dirac sea, but no `real' electron. We show that it admits an asymptotic expansion to any order in powers of the physical coupling constant \alphaph, provided that the ultraviolet cut-off behaves as \Lambda\sim e^{3\pi(1-Z_3)/2\alphaph}\gg1. The renormalization parameter $

    Low Density Limit of BCS Theory and Bose-Einstein Condensation of Fermion Pairs

    Full text link
    We consider the low density limit of a Fermi gas in the BCS approximation. We show that if the interaction potential allows for a two-particle bound state, the system at zero temperature is well approximated by the Gross-Pitaevskii functional, describing a Bose-Einstein condensate of fermion pairs.Comment: LaTeX2e, 17 page

    Gradient corrections for semiclassical theories of atoms in strong magnetic fields

    Full text link
    This paper is divided into two parts. In the first one the von Weizs\"acker term is introduced to the Magnetic TF theory and the resulting MTFW functional is mathematically analyzed. In particular, it is shown that the von Weizs\"acker term produces the Scott correction up to magnetic fields of order BZ2B \ll Z^2, in accordance with a result of V. Ivrii on the quantum mechanical ground state energy. The second part is dedicated to gradient corrections for semiclassical theories of atoms restricted to electrons in the lowest Landau band. We consider modifications of the Thomas-Fermi theory for strong magnetic fields (STF), i.e. for BZ3B \ll Z^3. The main modification consists in replacing the integration over the variables perpendicular to the field by an expansion in angular momentum eigenfunctions in the lowest Landau band. This leads to a functional (DSTF) depending on a sequence of one-dimensional densities. For a one-dimensional Fermi gas the analogue of a Weizs\"acker correction has a negative sign and we discuss the corresponding modification of the DSTF functional.Comment: Latex2e, 36 page

    Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields

    Full text link
    Using the Pauli-Villars regularization and arguments from convex analysis, we construct solutions to the classical time-independent Maxwell equations in Dirac's vacuum, in the presence of small external electromagnetic sources. The vacuum is not an empty space, but rather a quantum fluctuating medium which behaves as a nonlinear polarizable material. Its behavior is described by a Dirac equation involving infinitely many particles. The quantum corrections to the usual Maxwell equations are nonlinear and nonlocal. Even if photons are described by a purely classical electromagnetic field, the resulting vacuum polarization coincides to first order with that of full Quantum Electrodynamics.Comment: Final version to appear in Arch. Rat. Mech. Analysi

    A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case

    Get PDF
    This article is concerned with the derivation and the mathematical study of a new mean-field model for the description of interacting electrons in crystals with local defects. We work with a reduced Hartree-Fock model, obtained from the usual Hartree-Fock model by neglecting the exchange term. First, we recall the definition of the self-consistent Fermi sea of the perfect crystal, which is obtained as a minimizer of some periodic problem, as was shown by Catto, Le Bris and Lions. We also prove some of its properties which were not mentioned before. Then, we define and study in details a nonlinear model for the electrons of the crystal in the presence of a defect. We use formal analogies between the Fermi sea of a perturbed crystal and the Dirac sea in Quantum Electrodynamics in the presence of an external electrostatic field. The latter was recently studied by Hainzl, Lewin, S\'er\'e and Solovej, based on ideas from Chaix and Iracane. This enables us to define the ground state of the self-consistent Fermi sea in the presence of a defect. We end the paper by proving that our model is in fact the thermodynamic limit of the so-called supercell model, widely used in numerical simulations.Comment: Final version, to appear in Comm. Math. Phy
    corecore